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Abstract

This note derives the normal equations and formal errors for single baseline EOP. Since any
multi-baseline experiment can be built up from a set of single-baseline experiments these results
are quite general. We examine with particular interest the case where all of the stations lie on
a great circle, so that the baselines are coplanar. VLBI lore has it that this is a bad network.
We show that this is not the case.

1 Introduction

In this note I derive analytic formulas for the EOP formal errors as a function of baseline geometry.
In order to do this, I make the following simplifying assumptions. 1) The sky is uniformly sampled;
2) The number of observations is large; 3) The observation errors are independent of the observation.
This allows me to replace various sums by integrals which can be done exactly.

I start by looking at a single-baseline experiment on the equator I derive the normal equations,
and the formal errors for the EOP components. I then show how this result can be written for an
arbitrary baseline in terms of the “LT'V” baseline unit vectors. Since any VLBI measurement can
be considered to be a sum of single baseline experiments, this allows me to determine the formal
errors for an arbitrary VLBI network in principle.

The last thing I look at is the EOP determined by a regular polygon. There is an old saw in
VLBI EOP circles is that you can’t determine EOP very well if all stations lie on a circle. 1 show
this is wrong by looking at the case of 3 stations on the vertices of an equalateral triangle, and
N-equally spaced stations on a great circle.

2 Single Baseline EOP

In this section I derive the formal errors for single baseline EOP. For simplicity, I assume that
the two stations are on the equator, and are placed symmetrically at longitudes £5 so that their
coordinates are given by:

R. = R(cos %, +sin %, 0)

I can derive the results for other stations at other locations by a simple transformation of the
normal equations. The baseline vector is then:

Ry = 2R(O,sin%,0)
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hence Ry = 2R sina. The unit vector in the direction of some source is
S = (cos O cos ¢, cos O sin ¢, sin )

where O is the latitude, and ¢ the longitude. From the site vector and the source vector it is easy

to construct the local elevation and azimuth angles. The sine of the elevation is given by:
simnBLy = Ry S

e
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The condition that a source be visible is that sin /£L > 0. Actually, we don’t usually observe down

to the horizon. Instead we observe down to some minimum elevation. Hence the observations that
we use satisfy the condition:

= cosOcos(¢ F

sin BL > sin B Lnin

In order to use a given source it must be above the elevation limit at both sites. For simplicity we
assume that both elevation limits are the same. Then we can observe a source at both antennas
if both of the following conditions hold:

v

cos O cos(p — %) sin F Luin

cos © cos(p + %) > sin B Lyin

The VLBI delay is modeled as:

T = § . ﬁbl
A rotation can be specified by a three vector @ where the first component gives the delay about
the x-axis, etc. Under an infinitesimal rotation the delay transforms according to:

T:§'<ﬁbl+w}Xﬁbl)
The partial derivative of the delay with respect to @ is given by:
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This result is true for an arbitrary source and baseline. For our particular choice of baseline we
have:

:;% = Rp(—sin®, 0, cos © cos )
Note that the partial derivative of the y-component is 0. This makes sense, because rotations
about the axis of the baseline, in this case, the y-direction, leave the delay invariant. Hence we are
not sensitive to this component of EOP. There are 4 potentially non-vanishing components of the

normal matrix NV:
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Here N, etc. is the normal equation matrix element for the Xpole-Xpole and the sum is over all
of the observations. If we assume that 1.) we have lots of observations 2) that they are uniformly
distributed and 3) the observation errors are constant, then we can replace the above sums by

1 N b
Zf<@j7¢j) -2 u‘;T;QO s/f ,p)d

obs

integrals:

Here the integration is over all parts of the sky which are mutually visible. The factor in front is
a normalization factor which insures we get the correct value (Num_obs/o?) if f(©,p) = 1. This
normalization factor is the same for all matrix elements. Since all I am interested in is the relative
size of formal errors, this can be ignored. With these observations, the sums can be replaced by
integrals:

Npw = Rgl/dQ(sin@)Qcos@
N,, = Rgl/dQ(cosgocos@)Qcos@

Nyy = Ny = —Rgl/dQ (sin © cos  cos ©) cos ©

where the angular integration [ d€2 is restricted to that part of the sky which is mutually visible
to both sites. The third integral vanishes since the contribution of sin® on opposite sides of the
equator cancels out. We now turn to valuating the other two integrals.

If the cutoff angle is 0, then the integrations can be done explicitly. The mutually visibility
conditions become:

cos(go—g) > 0

2
cos( + %) > 0
which can be re-written as:
—r/2 < ¢—%§ﬂ/2

—r/2 < gp—l—%§7r/2

which has the solution

a-7T_ T
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The first integral then becomes:
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from which it follows that

_ \/T

7" =\ N
1 3 1

- R_bl\/;\/ﬂ—a

The second integral becomes:

T/2—« w/2
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from which it follows that

_ \/T
o, = N_33
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Note that the formal errors for the z component of EOP are always smaller than for the x compo-

nent. The ratio of the two is:
oy 1
7 \TvE2

If we are interested in the “normalized” normal equations, we need to calculate the normalization
factor, which is easy to do:

= 7/2
/dQ = /dgp / cos OdO
= A
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Nyg(normalized) = 3 O.—Q_Rbl
) 1 Num_obs sin o
N,.(normalized) = §O_—Q_R§l <1 t— a)

and the formal errors go like:
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The ratio of the formal errors remains the same. The separation between the stations varies between
0 and 180 degrees. The ratio of the formal errors varies between 1 and 1/v/2 as illustrated in the
figure below:
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Figure 1. Ratio of formal errors for EOP vs separation in degrees

3 Coordinate Independent Form of Normal Matrix

In the previous section I derived the EOP normal equation for a single baseline. In this section
I recast it in a form which is suitable for use for arbitrary baselines. Consider an arbitrary base-
line defined by two stations 7; and r_f This baseline has a natural orthogonal triplet of vectors
associated with it:
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These are the “LVT” unit vectors—length, vertical and transervese unit vectors. Assuming uniform
sky coverage, the contribution of this baseline to the EOP normal matrix is given by:

N = Nyveéy,; ® ey + Nerer; ® ety

where
1Num _obs _,
Nyy = 3 —— 7 -
1N b
Npp = um2osﬁ__>2<1+sma>
3 loa «

The angle « is the angle between the two stations. It is obvious from this that the tranverse
component of EOP is better determined than the vertical component. This formula allows us to
calculate the EOP normal equations for an arbitrary baseline. If we have several baselines we just
sum over all of them.



4 Baselines Spaced Along an Equilateral Triangle

We now turn to the special case of three stations equally spaced along the_> equator._Ebr simplicity,
we assume that they are spaced at +60, and 180. Call the three stations 24+ and Rqg9. We have
three stations are at:

The associated baselines are:

Ry = R,—R_ =r/30,1,0)
— — — 3 \/§
Rigo+ = Rigo— R4 ZT(§7 770)

The baseline vertical unit vectors for the three baselines are:

€V1+, - (1707 0)
_ 1 V3
€Vv,180+ = <_§’i7’0)

The baseline transverse unit vector is the same for all three baselines, and is given by:
éer =(0,0,1)
The total EOP normal equation is given by the sum:
Niot = Nyv (Bvy - ® €vy— + evisor ® €vigor + Evigo. ® Evigo ) + 3Nprér®er

Which, after simplification, takes the form:

SNyv 0 0
Nieot = 0 SNvv 0
0 3Npr

The formal errors for both Xpole and Ypole are the same, and are given by
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where I have used a@ = 7/6. The formal errors for the 7Z component (UT1) are:

7 = sz\/;v T—a+sina

R_bl 2w+3\/§




The ratio of the formal errors is:
o, T
oy 27+ 33
= 0.52314

Hence for this case UT1 is determined roughly twice as well as X or Y pole.

5 EOP accuracy for a regular polyhedron.

For the more general case where we have n stations spaced around the equator and you assume
that stations observed only with their nearest neighbor, you can show that the normal matrix takes
the form:

%NVV 0 0
Nieot = 0 5 Nvy 0
0 0 TLNTT

The X and Y pole formal errors are equal, and go like

2 \/’
Oz = Uy_[Rbl 2V 7 —«
1

Rbl n—27r

where I have used o = 27 /n. The formal errors for the UT1 are:

O, =

sz\/ 7T—Oé—|—Sané

Rbl\/_\/ 7w(n—2 —I—n81r12—7r

while the ratios of the errors are:

O'm \/_\/ —|—n81r12—7r

hence the formal errors for the UT1 component are smaller by at least a factor /2 then for the polar
motion components. This conclusion is true even if we relax the assumption of nearest neighbor
observation. Figure 2 below plots the ratio of the formal errors as a function of number of vertices
of the polyhedron. This ratio is generally close to 0.5.
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Figure 2. Ratio of EOP formal errors for regular polyhedron.



